Longitudinal size exponent for square-lattice directed animals

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1994 J. Phys. A: Math. Gen. 277007
(http://iopscience.iop.org/0305-4470/27/21/015)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 22:11

Please note that terms and conditions apply.

Longitudinal size exponent for square-lattice directed animals

A. R Conway \dagger and A J Guttmann \ddagger
Department of Mathematics, The University of Melbourne, Parkville, Victoria 3052, Australia

Received 12 July 1994

Abstract

Series expansions for the longitudinal gyration radius of square-lattice directed-site animals to order $N=39$ are given. This doubles the length of the available series. Analysis of the series yields the estimate $v_{\|}=0.81722 \pm 0.00005$, which excludes the conjecture $\nu_{\|}=\frac{9}{11}$, based on phenomenological renormalization and shorter series, but is consistent with the later phenomenological renormalization estimate of Dhar: $v_{\|}=0.81733 \pm 0.00005$.

1. Introduction

The square-lattice directed-animals problem is curious in that it shows both simple and complex critical behaviour within the same model. The number of distinct animals with n sites as well as their average width is known exactly [1,2] but the longitudinal size exponent $\nu_{\|}$, defined by $\left\langle R_{\|}^{2}\right\rangle_{n} \sim n^{2 \nu_{\|}}$, is not known exactly. Directed-site percolation can also be readily formulated in terms of these same animals, and yet there is no exact knowledge of percolation probabilities or exponents for this model. The generating function $f_{1}(x)$ for the number of directed animals of n-sites satisfies the quadratic equation

$$
(3 x-1) f_{1}^{2}+(3 x-1) f_{1}+x=0
$$

Other properties satisfy a similar equation. The perimeter-generating function $f_{2}(x)$, whose coefficients are the number of perimeter sites of all n-site directed animals, satisfies

$$
\begin{aligned}
& x(x+1)^{3}(3 x-1)^{3} f_{2}^{2}+\left(x^{2}+x+1\right)(x+1)^{2}(3 x-1)^{3} f_{2} \\
& \quad+x\left(2-6 x-5 x^{2}+12 x^{3}+13 x^{4}+12 x^{5}+9 x^{6}\right)=0 .
\end{aligned}
$$

The generating function for the second moment of width $f_{3}(x)$, whose coefficients are the total moment of inertia around the preferred direction, satisfies

$$
(x+1)(3 x-1)^{5} f_{3}^{2}+4 x^{4}=0
$$

The generating function for the number of loops $f_{4}(x)$, whose coefficients are the total number of loops in all directed- n-site animals, satisfies

$$
(x+1)(3 x-1)^{3} f_{4}^{2}+(x+1)(3 x-1)^{3} f_{4}+x^{4}\left(4 x^{2}+2 x-1\right)=0
$$

[^0]Table 1. The sum over all animals of longitudinal radius of gyration. The premultiplicative factor makes it an integer. c_{n} is the number of animals.

n	c_{n}	$n^{2} C_{n} R_{n}^{2}$
0	0	0
1	1	0
2	2	2
3	5	26
4	13	206
5	35	1290
6	96	7008
7	267	34616
8	750	159620
9	2123	698784
10	6046	2937078
11	17303	11947070
12	49721	47304690
13	143365	183126678
14	414584	695469488
15	1201917	2598054568
16	3492117	9567485872
17	10165779	34792851512
18	29643870	125128314886
19	86574831	445576045958
20	253188111	1572657087402
21	741365049	5506449749094
22	2173243128	19140831550468
23	6377181825	66097278935264
24	18730782252	226874601290480
25	55062586341	774431863828992
26	161995031226	2630059405421818
27	476941691177	8889989064525018
28	1405155255055	29918515974127482
29	4142457992363	100280380960533778
30	12219350698880	334849192296398760
31	36064309311811	1114161731736449424
32	106495542464222	3694969779198229800
33	314626865716275	12215917498976013160
34	929947027802118	40269358644255614746
35	2749838618630271	132382494758429251502
36	8134527149366543	434071400548028113250
37	24072650378629801	1419804361024411564838
38	71264483181775040	4633290589211722421468
39	211043432825804129	15086788088213710648984

The generating function for the square of the number of loops $f_{5}(x)$, whose coefficients are the square of the number of loops in all directed- n-site animals, satisfies

$$
\begin{aligned}
(x+1)^{3}(3 x-1)^{5} & f_{5}^{2}+(x-1)\left(2 x^{2}+4 x+1\right)(x+1)^{2}(3 x-1)^{5} f_{5} \\
& +x^{4}\left(-1+4 x+10 x^{2}-52 x^{3}+27 x^{4}+48 x^{5}-108 x^{6}+144 x^{7}+252 x^{8}\right)=0 .
\end{aligned}
$$

All these equations are obtained in [1].
The earliest study of $v_{\|}$appears to be by Nadal et al [3] who used a phenomenological renormalization group and estimated $\nu_{\|}=0.8185 \pm 0.0010$ and noted that this was close to the simple fraction $\frac{9}{11}=0.818181 \ldots$ Later, Privman and Barma [4] obtained series to
order $N=19$ and from their analysis obtained $\nu_{\|}=0.8177 \pm 0.0012$, in agreement with the earlier estimate. Later, Dhar [5] estimated $v_{\|}$by a phenomenological renormalization with strip widths up to 23 and obtained the much more precise estimate $\nu_{\|}=0.81733 \pm 0.00005$, which appears to rule out the earlier conjectured value.

In this paper, we have more than doubled the series and a careful analysis confirms the results of Dhar and, in particular, excludes the earlier conjecture $\frac{9}{11}$. It should also be noted that Dhar defines the average width to be the average maximal span, whereas we use the average of the sum of the squares of the distance of each site from the centre line of the animal.

The series have been generated by a transfer-matrix method [6] and the coefficients are given in table 1.

2. Analysis

We have analysed the series by a variety of methods. The 'generating function' of the gyration radius is singular at 1 , with exponent $1+2 v_{\|}$. Differential approximants [7] are all found to be defective, so any conclusions drawn therefrom need to be regarded with caution. They also show a decreasing trend with order, from which we can only estimate $\nu_{\| l}<0.8178$, which is, however, sufficient to rule out the conjecture $\frac{9}{11}$.

However, the series is sufficiently well behaved such that a variety of standard sequence extrapolation algorithms can be directly applied. In particular, if $R_{n}^{2} \sim n^{2 \nu}\left[A+B / n^{\Delta}\right]$ then $\left(R_{n}^{2} / R_{n-1}^{2}-1\right) n \sim 2 \nu+\mathrm{O}(1 / n)+\mathrm{O}\left(1 / n^{\Delta}\right)$. A variety of extrapolation procedures [7], including Brezinski's θ algorithm, Levin's u-transform and Neville extrapolation, all give estimate sequences of $2 v$ that are decreasing, allowing us, once again, to only estimate $\nu_{\|}<0.8178$. However, if we assume the existence of an analytic term in $\left\langle R_{\|}^{2}\right\rangle_{n}$, so that

$$
\left\langle R_{\|}^{2}\right\rangle_{n} \sim A n^{2 v}+B n+\cdots
$$

it then follows that $\left(\left\langle R_{\|}^{2}\right\rangle_{n} /\left\langle R_{\|}^{2}\right\rangle_{n-1}-1\right) n \sim 2 v+\mathrm{O}\left(n^{1-2 \nu}\right)$, or that the leading correction-toscaling exponent $\Delta=2 \nu-1$. Taking $\nu \approx 0.818$ then implies $\Delta \approx 0.636$. We therefore fitted the sequence $\left(\left\langle R_{\|}^{2}\right\rangle_{n} /\left\langle R_{\|}^{2}\right\rangle_{n-1}-1\right) n$ to the assumed form $2 \nu+a_{1} / n^{0.636}+a_{2} / n+a_{3} / n^{1.636}$ with the following results:

$$
\begin{aligned}
& \nu_{\|}=0.81722 \pm 0.00005 \quad a_{1}=0.1475 \pm 0.002 \\
& a_{2}=0.660 \pm 0.02 \quad a_{3}=-0.290 \pm 0.02
\end{aligned}
$$

Our estimate of $v_{\|}$is just in agreement with that of Dhar, our respective estimates and error bounds just meeting at $\nu_{\|}=0.81727$. If one assumes that the exact value is given by a rational fraction, there are only three possible fractions with denominators less than 200. These are

$$
\frac{76}{93}=0.817204 \ldots \quad \frac{161}{197}=0.817258 \ldots \quad \frac{85}{104}=0.817308 \ldots
$$

None of these fractions is particularly compelling. A remote possibility is that there are confluent logarithmic terms, in which case our analysis, and indeed all other analyses, cannot be relied upon. However, we consider this unlikely as there are no confluent logarithms in the other exponents for this problem, nor any suggestion that the critical dimension for directed percolation is two.

References

[1] Conway A R 1993 On the behaviour of self-avoiding walks and related problems PhD Thesis University of Melboume
[2] Dhar D, Phani M H and Barma M 1982 J. Phys. A: Math. Gen. 15 L279-84
[3] Nadal J P, Derrida B and Vannimenus J 1982 J. Physique 431561
[4] Privman V and Barma M 1984 Z. Phys. B 57 59-63
[5] Dhar D 1988 J. Phys. A: Math. Gen. 21 L893-7
[6] Conway A. R, Brak R and Guttmann A J 1993 J. Phys. A: Math. Gen. 26 3085-91
[7] Guttmann A J 1989 Phase Transitions and Critical Phenomena vol 13, ed C Domb and J Lebowitz (London: Academic)

[^0]: \dagger Current address: Department of Aeronautical Engineering, Stanford University, Stanford, CA 94305, USA. \ddagger Supported by a grant from the Australian Research Council.

